PD-L1 / B7-H1 / CD274 Antibody, Rabbit

PAb

Catalog Number: 10084-RP01

<table>
<thead>
<tr>
<th>General</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunogen:</td>
<td>Recombinant Human B7-H1 protein (Catalog#10084-H08H)</td>
</tr>
<tr>
<td>Ig Type:</td>
<td>Rabbit IgG</td>
</tr>
<tr>
<td>Applications:</td>
<td>ELISA</td>
</tr>
<tr>
<td>Specificity:</td>
<td>Human B7-H1 / CD274 / PD-L1</td>
</tr>
<tr>
<td>Formulation:</td>
<td>0.2 μm filtered solution in PBS</td>
</tr>
<tr>
<td>Storage:</td>
<td>< -20°C</td>
</tr>
</tbody>
</table>

Preparation
Produced in rabbits immunized with purified, recombinant Human B7-H1 (rh B7-H1; Catalog#10084-H08H; NP_054862.1; Met 1-Thr 239). Total IgG was purified by Protein A affinity chromatography.

Applications
Direct ELISA – This antibody can be used at 0.5-1.0 μg/mL with the appropriate secondary reagents to detect Human B7-H1. The detection limit for Human B7-H1 is ≤ 0.039 ng/well.

Specificity
Human B7-H1 / CD274 / PD-L1

Storage
This antibody can be stored at 2°C-8°C for one month without detectable loss of activity. Antibody products are stable for twelve months from date of receipt when stored at -20°C to -80°C. Preservative-Free.

Sodium azide is recommended to avoid contamination (final concentration 0.05%-0.1%). It is toxic to cells and should be disposed of properly. Avoid repeated freeze-thaw cycles.

Background
Programmed death-1 ligand-1 (PD-L1, CD274, B7-H1) has been identified as the ligand for the immuno-inhibitory receptor programmed death-1 (PD1/PDCD1) and has been demonstrated to play a role in the regulation of immune responses and peripheral tolerance. PD-L1/B7-H1 is a member of the growing B7 family of immune molecules and this protein contains one V-like and one C-like Ig domain within the extracellular domain, and together with PD-L2, are two ligands for PD1 which belongs to the CD28/CTLA4 family expressed on activated lymphoid cells. By binding to PD1 on activated T-cells and B-cells, PD-L1 may inhibit ongoing T-cell responses by inducing apoptosis and arresting cell-cycle progression. Accordingly, it leads to growth of immunogenic tumor growth by increasing apoptosis of antigen specific T cells and may contribute to immune evasion by cancers. PD-L1 thus is regarded as promising therapeutic target for human autoimmune disease and malignant cancers.

Reference

Manufactured By Sino Biological Inc., FOR RESEARCH USE ONLY. NOT FOR USE IN HUMANS.
Fax: +86-10-51029969 ● Tel: +86-400-890-9989 ● http://www.sinobiological.com