After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human DLL4 Gene cDNA clone plasmid

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
Human DLL4 cDNA Clone Product Information
RefSeq ORF Size:2058bp
cDNA Description:Full length Clone DNA of Homo sapiens delta-like 4 (Drosophila).
Gene Synonym:DLL4, hdelta2, MGC126344
Vector:pMD18-T Simple Vector
Restriction Site:
Tag Sequence:
Sequence Description:Identical with the Gene Bank Ref. ID sequence.
Sequencing primers:
Antibiotic in E.coli:
Antibiotic in mammalian cell:
Shipping_carrier:Each tube contains lyophilized plasmid.
Storage:The lyophilized plasmid can be stored at room temperature for three months.
pMD18-T Simple Vector Information

pMD18-T Simple Vector is a high-efficiency TA cloning vector constructed from pUC18, of which the initial multiple cloning sites (MCS) were destroyed. Thus the cDNA should be amplified by PCR with primers containing a restriction site for subclone. Competent cells appropriate for pUC18 are also appropriated for the Vector, e.g. JM109, DH5α, TOP10. The pMD18-T Simple Vector is 2.6kb in size. Selection of the plasmid in E. coli is conferred by the ampicillin resistance gene. The coding sequence was inserted by TA cloning at site 425.

pMD18-T Simple Usage Suggestion

The coding sequence can be amplified by PCR with M13-47 and RV-M primers.

Vector Sequence Download
Product nameProduct name

Delta-like protein 4 (DLL4, Delta4), a type I membrane-bound Notch ligand, is one of five known Notch ligands in mammals and interacts predominantly with Notch 1, which has a key role in vascular development. Recent studies yield substantial insights into the role of DLL4 in angiogenesis. DLL4 is induced by vascular endothelial growth factor (VEGF) and acts downstream of VEGF as a 'brake' on VEGF-induced vessel growth, forming an autoregulatory negative feedback loop inactivating VEGF. DLL4 is downstream of VEGF signaling and its activation triggers a negative feedback that restrains the effects of VEGF. Attenuation of DLL4/Notch signaling results in chaotic vascular network with excessive branching and sprouting. DLL4 is widely distributed in tissues other than vessels including many malignancies. Furthermore, the molecule is internalized on binding its receptor and often transported to the nucleus. In pathological conditions, such as cancer, DLL4 is up-regulated strongly in the tumour vasculature. Blockade of DLL4-mediated Notch signaling strikingly increases nonproductive angiogenesis, but significantly inhibits tumor growth in preclinical mouse models. In preclinical studies, blocking of DLL4/Notch signaling is associated with a paradoxical increase in tumor vessel density, yet causes marked growth inhibition due to functionally defective vasculature. Thus, DLL4 blockade holds promise as an additional strategy for angiogenesis-based cancer therapy.

  • Yan M, et al. (2007) Delta-like 4/Notch signaling and its therapeutic implications. Clin Cancer Res. 13(24): 7243-6.
  • Sainson RC, et al. (2007) Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med. 13(9): 389-95.
  • Martinez JC, et al. (2009) Nuclear and membrane expression of the angiogenesis regulator delta-like ligand 4 (DLL4) in normal and malignant human tissues. Histopathology. 54(5): 598-606.
  • Li JL, et al. (2010) Targeting DLL4 in tumors shows preclinical activity but potentially significant toxicity. Future Oncol. 6(7): 1099-103.
  • Size / Price
    Catalog: HG10171-M
    List Price:   (Save )
    Price:      [How to order]
    AvailabilityIn Stock Shipping instructions