After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Mouse ERK2 / MAPK1 / MAPK2 Insect Cell Lysate (WB positive control)

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
Mouse ERK2 Transfected / Overexpression Cell Lysate Product Information
Expressed Host:Baculovirus-Insect cells
Product Description:Baculovirus-Insect Cell lysate that Mouse MAPK1 / ERK2 transfected / overexpressed for Western blot (WB) positive control. The whole cell lysate is provided in 1X Sample Buffer (1X modified RIPA buffer+1X SDS loading buffer).
Sequence information:A DNA sequence encoding the mouse MAPK1 (P63085) (Met1-Ser358) was fused with the N-terminal polyhistidine-tagged GST tag at the N-terminus.
Predicted N Terminal:Met
Molecule Mass:The recombinant mouse MAPK1/GST chimera consists of 595 amino acids and has a calculated molecular mass of 69.1 kDa. The recombinant protein migrates as an approximately 60 kDa band in SDS-PAGE under reducing conditions.
Mouse ERK2 Transfected / Overexpression Cell Lysate Usage Guide
Preparation Method:Cell lysate was prepared by homogenization in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined by Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 min in 1 x SDS loading buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer:Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF.
Quality Control Testing:12.5% SDS-PAGE Stained with Coomassie Blue after protein purification.
Stability:Samples are stable for up to twelve months from date of receipt.
Recommend Usage:1.  Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2.  Re-dissolve the pellet using 200μL pure water and boil for 2-5 min. 3. Store the lyophilized cell lysate at 4℃. After re-dissolution, recommend to aliquot it into smaller quantities and store at -80℃.
Storage Buffer:1 X Sample Buffer (1 X modified RIPA buffer+1 X SDS loading buffer).
Storage Instruction:Store at 4℃. After re-dissolution, aliquot and store at -80℃.
Application notes:Western blot (WB): Use at an assay dependent dilution.
Other Applications: Not tested.
Optimal dilutions/concentrations should be determined by the end user.
ERK2 / MAPK1 / MAPK2 Background

MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. ERK is a versatile protein kinase that regulates many cellular functions. Growing evidence suggests that extracellular signal-regulated protein kinase 1/2 (ERK1/2) plays a crucial role in promoting cell death in a variety of neuronal systems, including neurodegenerative diseases. It is believed that the magnitude and the duration of ERK1/2 activity determine its cellular function. Activation of ERK1/2 are implicated in the pathophysiology of spinal cord injury (SCI). ERK2 signaling is a novel target associated with the deleterious consequences of spinal injury. ERK-2, also known as Mitogen-activated protein kinase 1 (MAPK1), is a member of the protein kinase superfamily and MAP kinase subfamily. MKP-3 is a dual specificity phosphatase exclusively specific to MAPK1 for its substrate recognition and dephosphorylating activity. The activation of MAPK1 requires its phosphorylation by upstream kinases. Upon activation, MAPK1 translocates to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. MAPK1 is involved in both the initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors such as ELK1. MAPK1 acts as a transcriptional repressor which represses the expression of interferon gamma-induced genes. Transcriptional activity is independent of kinase activity. The nuclear-cytoplasmic distribution of ERK2 is regulated in response to various stimuli and changes in cell context. Furthermore, the nuclear flux of ERK2 occurs by several energy- and carrier-dependent and -independent mechanisms. ERK2 has been shown to translocate into and out of the nucleus by facilitated diffusion through the nuclear pore, interacting directly with proteins within the nuclear pore complex, as well as by karyopherin-mediated transport. ERK2 interacts with the PDE4 catalytic unit by binding to a KIM (kinase interaction motif) docking site located on an exposed beta-hairpin loop and an FQF (Phe-Gln-Phe) specificity site located on an exposed alpha-helix. These flank a site that allows phosphorylation by ERK, the functional outcome of which is orchestrated by the N-terminal UCR1/2 (upstream conserved region 1 and 2) modules.

Mouse ERK2 / MAPK1 / MAPK2 References
  • Houslay MD, et al. (2003) The role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways. Biochem Soc Trans. 31(Pt 6): 1186-90.
  • Jivan A, et al. (2010) Reconstitution of the Nuclear Transport of the MAP Kinase ERK2. Methods Mol Biol. 661: 273-85.
  • Yu CG, et al. (2010) Involvement of ERK2 in traumatic spinal cord injury. J Neurochem. 113(1): 131-42.
  • Subramaniam S, et al. (2010) ERK and cell death: ERK1/2 in neuronal death. FEBS J. 277(1): 22-9.
  • Size / Price
    Catalog: 50445-M20BL-300
    List Price:   (Save )
    Price:      [How to order]
    Availability2 weeksShipping instructions