After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human TNFRSF11A Human Cells Transfected Lysate (positive control) (denatured)

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
TNFRSF11ATransfected / Overexpression Cell Lysate Product Information
Product Description:Human Cells transfected lysate in which Human TNFRSF11A has been over-expressed. The whole cell lysate is provided in 1X Sample Buffer (1X modified RIPA buffer+1X SDS sample buffer).
Preparation Method:Cell lysate was prepared by homogenization in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined with Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 minutes in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer:Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF
Quality Control Testing:12.5% SDS-PAGE Stained with Coomassie Blue
Stability:Samples are stable for up to twelve months from date of receipt at -80℃
Recommend Usage:1. Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2. Re-dissolve the pellet using 200μL pure water and boiled for 2-5 min. 3. Store it at -80℃. Recommend to aliquot the cell lysate into smaller quantities for optimal storage. Avoid repeated freeze-thaw cycles. Notes:The lysate is ready to load on SDS-PAGE for Western blot application. If dissociating conditions are required, add reducing agent prior to heating.
Storage Buffer:In modified RIPA Lysis Buffer
Storage Instruction:Store at -80℃. Aliquot to avoid repeated freezing and thawing
Application notes:WB: Use at an assay dependent dilution.
Not yet tested in other applications.
Optimal dilutions/concentrations should be determined by the end user.

TNFRSF11A is a member of the TNF-receptor superfamily. In mouse, it is also known as CD265. TNFRSF11A contains 4 TNFR-Cys repeats and is widely expressed with high levels in skeletal muscle, thymus, liver, colon, small intestine and adrenal gland. It is an essential mediator for osteoclast and lymph node development. TNFRSF11A and its ligand are important regulators of the interaction between T cells and dendritic cells. It can interact with various TRAF family proteins, through which this receptor induces the activation of NF-kappa B and MAPK8/JNK. Defects in TNFRSF11A can cause familial expansile osteolysis (FEO). FEO is a rare autosomal dominant bone disorder characterized by focal areas of increased bone remodeling. Defects in TNFRSF11A also can cause Paget disease of bone type 2 (PDB2). PDB2 is a bone-remodeling disorder with clinical similarities to FEO. Defects in TNFRSF11A are the cause of osteopetrosis autosomal recessive type 7 which characterized by abnormally dense bone, due to defective resorption of immature bone.

  • Darnay B G, et al. (1998) Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem. 273(32):20551-5.
  • Darnay B G, et al. (1999) Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem. 274(12):7724-31.
  • Galibert L, et al. (1998) The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem. 273(51):34120-7.
  • Size / Price
    List Price: $195.00  (Save $0.00)
    Price:$195.00      [How to order]
    Availability2 weeks
      Recently Viewed Items