Quick Order

Rat UBE2I Gene cDNA Clone (full-length ORF Clone), expression ready, N-HA-tagged

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
UBE2IcDNA Clone Product Information
Gene_bank_ref_id:NM_013050.1
cDNA Size:477
cDNA Description:ORF Clone of Rattus norvegicus ubiquitin-conjugating enzyme E2I DNA.
Gene Synonym:UbcE2A
Species:Rat
Vector:pCMV3-N-HA
Restriction Site:
Tag Sequence:HA Tag Sequence: TATCCTTACGACGTGCCTGACTACGCC
Sequence Description:
Shipping_carrier:Each tube contains approximately 10 μg of lyophilized plasmid.
Storage:The lyophilized plasmid can be stored at ambient temperature for three months.
pCMV3-N-HA Vector Information
 
Vector Name pCMV3-N-HA
Vector Size 6101bp
Vector Type Mammalian Expression Vector
Expression Method Constiutive, Stable / Transient
Promoter CMV
Antibiotic Resistance Kanamycin
Selection In Mammalian Cells Hygromycin
Protein Tag HA
Sequencing Primer Forward:T7(TAATACGACTCACTATAGGG)
Reverse:BGH(TAGAAGGCACAGTCGAGG)

pCMV3-N-HA Physical Map
Schematic of pCMV3-N-HA Multiple Cloning Sites

HA Tag Info

Human influenza hemagglutinin (HA) is a surface glycoprotein required for the infectivity of the human virus. The HA tag is derived from the HA-molecule corresponding to amino acids 98-106 has been extensively used as a general epitope tag in expression vectors. Many recombinant proteins have been engineered to express the HA tag, which does not appear to interfere with the bioactivity or the biodistribution of the recombinant protein. This tag facilitates the detection, isolation, and purification of the proteins.

The actual HA tag is as follows: 5' TAC CCA TAC GAT GTT CCA GAT TAC GCT 3' or 5' TAT CCA TAT GAT GTT CCA GAT TAT GCT 3' The amino acid sequence is: YPYDVPDYA.

Related Products
Product nameProduct name
Background

UBE2I is a member of the ubiquitin-conjugating E2 family whose members perform the second step in the ubiquitination reaction. Initially identified as the main process for protein degradation, ubiquitination is believed nowadays to be crucial for a wider range of cellular processes. The outcome of the ubiquitin-conjugation reaction, and thereby the fate of the substrate, is heavily dependent on the number of ubiquitin molecules attached and how these ubiquitin molecules are inter-connected. To deal with this complexity and to allow adequate ubiquitination in time and space, a highly sophisticated conjugation machinery has been developed. In a sequential manner, ubiquitin becomes activated by an ubiquitin-activating enzyme (E1), which then transfers the ubiquitin to a group of ubiquitin-conjugating enzymes (E2s). Next, ubiquitin-loaded E2s are interacting with ubiquitin protein ligases (E3s) and ubiquitin is conjugated to substrates on recruitment by the E3. These three key enzymes are operating in a hierarchical system, wherein two E1s and 35 E2s have been found and hundreds of E3s have been identified in humans. 

References
  • Sjoerd J L van Wijk, et al. (2009) A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol. 5: 317.
  • Nandi D, et al. (2006) The ubiquitin-proteasome system. Journal of biosciences. 31 (1): 137-55.
  • Size / Price
    Catalog:RG81167-NY
    List Price: $295.00  (Save $0.00)
    Price:$295.00      [How to order]
    Availability2-3 weeks
    Images
      Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"