After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human RANKL / OPGL / TNFSF11 / CD254 HEK293 Cell Lysate (WB positive control)

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
Human TNFSF11 Transfected / Overexpression Cell Lysate Product Information
Expressed Host:Human Cells
Product Description:Human Cell lysate that Human TNFSF11 / RANKL / CD254 transfected / overexpressed for Western blot (WB) positive control. The whole cell lysate is provided in 1X Sample Buffer (1X modified RIPA buffer+1X SDS loading buffer).
Sequence information:A DNA sequence encoding the human TNFSF11 isoform 2 (O14788-2) (Gly 63-Asp 244) was fused with the Fc region of human IgG1 at the N-terminus.
Predicted N Terminal:Glu 20
Molecule Mass:The recombinant human TNFSF11/Fc chimera is a disulfide-linked homodimeric protein. The reduced monomer consists of 443 amino acids and has a calculated molecular mass of 48.9 kDa. In SDS-PAGE under reducing conditions, the apparent molecular mass of rh TNFSF11/Fc monomer is approximately 50-55 kDa due to the glycosylation.
Human TNFSF11 Transfected / Overexpression Cell Lysate Usage Guide
Preparation Method:Cell lysate was prepared by homogenization in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined by Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 min in 1 x SDS loading buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer:Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF.
Quality Control Testing:12.5% SDS-PAGE Stained with Coomassie Blue after protein purification.
Stability:Samples are stable for up to twelve months from date of receipt.
Recommend Usage:1.  Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2.  Re-dissolve the pellet using 200μL pure water and boil for 2-5 min. 3. Store the lyophilized cell lysate at 4℃. After re-dissolution, recommend to aliquot it into smaller quantities and store at -80℃.
Storage Buffer:1 X Sample Buffer (1 X modified RIPA buffer+1 X SDS loading buffer).
Storage Instruction:Store at 4℃. After re-dissolution, aliquot and store at -80℃.
Application notes:Western blot (WB): Use at an assay dependent dilution.
Other Applications: Not tested.
Optimal dilutions/concentrations should be determined by the end user.
RANKL/OPGL/TNFSF11 (CD254) Background

Tumor necrosis factor ligand superfamily member 11, also known as Receptor activator of nuclear factor kappa-B ligand, Osteoprotegerin ligand, TNFSF11, RANKL, TRANCE, OPGL and CD254, is a single-pass type II membrane protein which belongs to the tumor necrosis factor family. The receptor activator of nuclear factor-kappaB ligand (RANKL), its cognate receptor RANK, and its natural decoy receptor osteoprotegerin have been identified as the final effector molecules of osteoclastic bone resorption. RANK and RANKL are key regulators of bone remodeling and regulate T cell/dendritic cell communications, and lymph node formation. Moreover, RANKL and RANK are expressed in mammary gland epithelial cells and control the development of a lactating mammary gland during pregnancy. Genetically, RANKL and RANK are essential for the development and activation of osteoclasts and bone loss in response to virtually all triggers tested. Inhibition of RANKL function via the natural decoy receptor osteoprotegerin (OPG, TNFRSF11B) prevents bone loss in postmenopausal osteoporosis and cancer metastases. Importantly, RANKL appears to be the pathogenetic principle that causes bone and cartilage destruction in arthritis. RANK-RANKL signaling not only activates a variety of downstream signaling pathways required for osteoclast development, but crosstalk with other signaling pathways also fine-tunes bone homeostasis both in normal physiology and disease. In addition, RANKL and RANK have essential roles in lymph node formation, establishment of the thymic microenvironment, and development of a lactating mammary gland during pregnancy.

Human RANKL/OPGL/TNFSF11 (CD254) References
  • Takayanagi H, et al. (2002) Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 4 Suppl 3: S227-32.
  • Nakashima T, et al. (2003) RANKL and RANK as novel therapeutic targets for arthritis. Curr Opin Rheumatol. 15(3): 280-7.
  • Schwarz EM, et al. (2007) Clinical development of anti-RANKL therapy. Arthritis Res Ther. 9 Suppl 1: S7.
  • Leibbrandt A, et al. (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 1143: 123-50.
  • Size / Price
    Catalog: 11682-H01HL-300
    List Price:   (Save )
    Price:      [How to order]
    Availability2 weeksShipping instructions