After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human EphA4 Human Cells Transfected Lysate (positive control) (denatured)

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
EphA4Transfected / Overexpression Cell Lysate Product Information
Product Description:Human Cells transfected lysate in which Human EPHA4 has been over-expressed. The whole cell lysate is provided in 1X Sample Buffer (1X modified RIPA buffer+1X SDS sample buffer).
Preparation Method:Cell lysate was prepared by homogenization in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined with Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 minutes in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer:Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF
Quality Control Testing:12.5% SDS-PAGE Stained with Coomassie Blue
Stability:Samples are stable for up to twelve months from date of receipt at -80℃
Recommend Usage:1. Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2. Re-dissolve the pellet using 200μL pure water and boiled for 2-5 min. 3. Store it at -80℃. Recommend to aliquot the cell lysate into smaller quantities for optimal storage. Avoid repeated freeze-thaw cycles. Notes:The lysate is ready to load on SDS-PAGE for Western blot application. If dissociating conditions are required, add reducing agent prior to heating.
Storage Buffer:In modified RIPA Lysis Buffer
Storage Instruction:Store at -80℃. Aliquot to avoid repeated freezing and thawing
Application notes:WB: Use at an assay dependent dilution.
Not yet tested in other applications.
Optimal dilutions/concentrations should be determined by the end user.

EPH receptor A4 (ephrin type-A receptor 4), also known as EphA4, belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family which 16 known receptors (14 found in mammals) are involved: EPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHA9, EPHA10, EPHB1, EPHB2, EPHB3, EPHB4, EPHB5, EPHB6. The Eph family of receptor tyrosine kinases (comprising EphA and EphB receptors) has been implicated in synapse formation and the regulation of synaptic function and plasticity6. EphA4 is enriched on dendritic spines of pyramidal neurons in the adult mouse hippocampus, and ephrin-A3 is localized on astrocytic processes that envelop spines. Eph receptor−mediated signaling, which is triggered by ephrins7, probably modifies the properties of synapses during synaptic activation and remodeling. Ephrin receptors are components of cell signalling pathways involved in animal growth and development, forming the largest sub-family of receptor tyrosine kinases (RTKs). The extracellular domain of an EphA4 interacts with ephrin ligands, which may be tethered to neighbouring cells. Ligand-mediated activation of Ephs induce various important downstream effects and Eph receptors have been studied for their potential roles in the development of cancer.

  • Murai KK, et al. (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 6(2): 153-60.
  • Kullander K, et al. (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science. 299(5614): 1889-92.
  • Smith A, et al. (1997) The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol. 7(8): 561-70.
  • Size / Price
    List Price: $195.00  (Save $0.00)
    Price:$195.00      [How to order]
    Availability2 weeks
      Recently Viewed Items