After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human Cripto / TDGF1 HEK293 Cell Lysate (WB positive control)

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
Human TDGF1 Transfected / Overexpression Cell Lysate Product Information
Expressed Host:Human Cells
Product Description:Human Cell lysate that Human TDGF1 / CRGF transfected / overexpressed for Western blot (WB) positive control. The whole cell lysate is provided in 1X Sample Buffer (1X modified RIPA buffer+1X SDS loading buffer).
Sequence information:A DNA sequence encoding the human TDGF1 (AAH22393.1) (Met 1-Thr 172) with a C-terminal polyhistidine tag was expressed.
Predicted N Terminal:Leu 31
Molecule Mass:The secreted recombinant human TDGF1 comprises 153 amino acids with a predicted molecular mass of 17.4 kDa. As a result of glycosylation, the apparent molecular mass of rhTDGF1 is approximately 25-30 kDa in SDS-PAGE under reducing conditions.
Human TDGF1 Transfected / Overexpression Cell Lysate Usage Guide
Preparation Method:Cell lysate was prepared by homogenization in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined by Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 min in 1 x SDS loading buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer:Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF.
Quality Control Testing:12.5% SDS-PAGE Stained with Coomassie Blue after protein purification.
Stability:Samples are stable for up to twelve months from date of receipt.
Recommend Usage:1.  Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2.  Re-dissolve the pellet using 200μL pure water and boil for 2-5 min. 3. Store the lyophilized cell lysate at 4℃. After re-dissolution, recommend to aliquot it into smaller quantities and store at -80℃.
Storage Buffer:1 X Sample Buffer (1 X modified RIPA buffer+1 X SDS loading buffer).
Storage Instruction:Store at 4℃. After re-dissolution, aliquot and store at -80℃.
Application notes:Western blot (WB): Use at an assay dependent dilution.
Other Applications: Not tested.
Optimal dilutions/concentrations should be determined by the end user.
Cripto/TDGF1/ CRGF Background

Cripto/TDGF1 is a member of the epidermal growth factor (EGF)- Cripto, Frl-1, and Cryptic (CFC) family. EGF-CFC family member proteins share a variant EGF-like motif, a conserved cysteine-rich domain, and a C-terminal hydrophobic region. Before gastrulation, Cripto is asymmetrically expressed in a proximal–distal gradient in the epiblast, and subsequently is expressed in the primitive streak and newly formed embryonic mesoderm. These proteins play key roles in intercellular signaling pathways during vertebrate embryogenesis. Mutations in Cripto/TDGF1 can cause autosomal visceral heterotaxy. Cripto/TDGF1 is involved in left-right asymmetric morphogenesis during organ development. Cripto signalling is essential for the conversion of a proximal–distal asymmetry into an orthogonal anterior–posterior axis. The mechanism of inhibitory effects of the Cripto includes both cancer cell apoptosis, activation of c-Jun-NH(2)-terminal kinase and p38 kinase signaling pathways and blocking of Akt phosphorylation. Thus, Cripto is a unique target, and Immunohistochemistry to Cripto could be of therapeutic value for human cancers.

Human Cripto/TDGF1/ CRGF References
  • Calvanese L, et al. (2006) Solution structure of mouse Cripto CFC domain and its inactive variant Trp107Ala. J Med Chem. 49 (24): 7054-62.
  • Lonardo E, et al. (2010) A small synthetic cripto blocking Peptide improves neural induction, dopaminergic differentiation, and functional integration of mouse embryonic stem cells in a rat model of Parkinson's disease. Stem Cells. 28 (8): 1326-37.
  • Chambery A, et al. (2009) Qualitative and quantitative proteomic profiling of cripto(-/-) embryonic stem cells by means of accurate mass LC-MS analysis. J Proteome Res. 8 (2): 1047-58.
  • Size / Price
    Catalog: 10908-H08HL-300
    List Price:   (Save )
    Price:      [How to order]
    Availability2 weeksShipping instructions