After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human c-MET / HGFR Human Cells Transfected Lysate (positive control) (denatured)

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
c-METTransfected / Overexpression Cell Lysate Product Information
Product Description:Human Cells transfected lysate in which Human c-MET / HGFR has been over-expressed. The whole cell lysate is provided in 1X Sample Buffer (1X modified RIPA buffer+1X SDS sample buffer).
Preparation Method:Cell lysate was prepared by homogenization in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined with Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 minutes in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer:Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF
Quality Control Testing:12.5% SDS-PAGE Stained with Coomassie Blue
Stability:Samples are stable for up to twelve months from date of receipt at -80℃
Recommend Usage:1. Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2. Re-dissolve the pellet using 200μL pure water and boiled for 2-5 min. 3. Store it at -80℃. Recommend to aliquot the cell lysate into smaller quantities for optimal storage. Avoid repeated freeze-thaw cycles. Notes:The lysate is ready to load on SDS-PAGE for Western blot application. If dissociating conditions are required, add reducing agent prior to heating.
Storage Buffer:In modified RIPA Lysis Buffer
Storage Instruction:Store at -80℃. Aliquot to avoid repeated freezing and thawing
Application notes:WB: Use at an assay dependent dilution.
Not yet tested in other applications.
Optimal dilutions/concentrations should be determined by the end user.

Hepatocyte growth factor receptor (HGFR), also known as c-Met or mesenchymal-epithelial transition factor (MET), is a receptor tyrosine kinase (RTK) that has been shown to be overexpressed and/or mutated in a variety of malignancies. HGFR protein is produced as a single-chain precursor, and HGF is the only known ligand. Normal HGF/HGFR signaling is essential for embryonic development, tissue repair or wound healing, whereas aberrantly active HGFR has been strongly implicated in tumorigenesis, particularly in the development of invasive and metastatic phenotypes. HGFR protein is a multifaceted regulator of growth, motility, and invasion, and is normally expressed by cells of epithelial origin. Preclinical studies suggest that targeting aberrant HGFR signaling could be an attractive therapy in cancer.

  • McGill GG, et al. (2006) c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem. 281(15): 10365-73.
  • Garcia S, et al. (2007) c-Met overexpression in inflammatory breast carcinomas: automated quantification on tissue microarrays. British journal of cancer. 96(2): 329-35.
  • Socoteanu MP, et al. (2008) c-Met targeted therapy of cholangiocarcinoma. World J Gastroenterol. 14(19): 2990-4.
  • Kong DS, et al. (2009) Prognostic significance of c-Met expression in glioblastomas. Cancer. 115(1): 140-8.