After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human TLR4 / CD284 Baculovirus-Insect Cells Transfected Lysate (positive control) (denatured)

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
TLR4Transfected / Overexpression Cell Lysate Product Information
Product Description:Baculovirus-Insect Cells transfected lysate in which Human TLR4 / CD284 has been over-expressed. The whole cell lysate is provided in 1X Sample Buffer (1X modified RIPA buffer+1X SDS sample buffer).
Preparation Method:Cell lysate was prepared by homogenization in ice-cold modified RIPA Lysis Buffer with cocktail of protease inhibitors (Sigma). Cell debris was removed by centrifugation. Protein concentration was determined with Bradford assay (Bio-Rad protein assay, Microplate Standard assay). The cell lysate was boiled for 5 minutes in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% b-mercaptoethanol, and lyophilized.
Lysis Buffer:Modified RIPA Lysis Buffer: 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% SDS, 1% Sodium deoxycholate, 1mM PMSF
Quality Control Testing:12.5% SDS-PAGE Stained with Coomassie Blue
Stability:Samples are stable for up to twelve months from date of receipt at -80℃
Recommend Usage:1. Centrifuge the tube for a few seconds and ensure the pellet at the bottom of the tube. 2. Re-dissolve the pellet using 200μL pure water and boiled for 2-5 min. 3. Store it at -80℃. Recommend to aliquot the cell lysate into smaller quantities for optimal storage. Avoid repeated freeze-thaw cycles. Notes:The lysate is ready to load on SDS-PAGE for Western blot application. If dissociating conditions are required, add reducing agent prior to heating.
Storage Buffer:In modified RIPA Lysis Buffer
Storage Instruction:Store at -80℃. Aliquot to avoid repeated freezing and thawing
Application notes:WB: Use at an assay dependent dilution.
Not yet tested in other applications.
Optimal dilutions/concentrations should be determined by the end user.

TLR4, also known as TLR-4, is a member of the Toll-like receptor (TLR) family, which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. TLR4 is most abundantly expressed in placenta, and in myelomonocytic subpopulation of the leukocytes. TLR 4 has also been designated as CD284 (cluster of differentiation 284). It has been implicated in signal transduction events induced by lipopolysaccharide (LPS) found in most gram-negative bacteria. TLR4 Cooperates with LY96 and CD14 to mediate the innate immune response to bacterial lipopolysaccharide (LPS). It acts via MYD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. It is also involved in LPS-independent inflammatory responses triggered by Ni(2+).

  • Re, Fabio, et al. (2002) Monomeric recombinant MD-2 binds toll-like receptor 4 tightly and confers lipopolysaccharide responsiveness. J Biol Chem. 277(26):23427-32.
  • Shimazu, R, et al. (1999) MD-2, a Molecule that Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4. J Exp Med. 189(11):1777-82.
  • Blanco, A M, et al. (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. Journal of immunology. 175(10):6893-9.
  • Size / Price
    List Price: $195.00  (Save $0.00)
    Price:$195.00      [How to order]
    Availability2 weeks
      Recently Viewed Items