Text Size:AAA

S100B Protein, Antibody, ELISA Kit, cDNA Clone

S100B  Related Areas

S100B  Related Pathways

S100B  Related Product

    S100B  Summary & Protein Information

    S100B  Background

    Gene Summary: The protein encoded by S100B gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21; however, S100B gene is located at 21q22.3. This protein may function in Neurite extension, proliferation of melanoma cells, stimulation of Ca2+ fluxes, inhibition of PKC-mediated phosphorylation, astrocytosis and axonal proliferation, and inhibition of microtubule assembly. Chromosomal rearrangements and altered expression of S100B gene have been implicated in several neurological, neoplastic, and other types of diseases, including Alzheimer's disease, Down's syndrome, epilepsy, amyotrophic lateral sclerosis, melanoma, and type I diabetes. [provided by RefSeq, Jul 2008]
    General information above from NCBI
    Subunit structure: Dimer of either two alpha chains, or two beta chains, or one alpha and one beta chain. The S100B dimer binds two molecules of STK38 (By similarity). Interacts with CACYBP in a calcium- dependent manner (By similarity). Interacts with ATAD3A; this interaction probably occurs in the cytosol prior to ATAD3A mitochondrial targeting. Interacts with S100A6. The S100B dimer interacts with two molecules of CAPZA1. Interacts with AGER.
    Subcellular location: Cytoplasm. Nucleus.
    Tissue specificity: Although predominant among the water-soluble brain proteins, S100 is also found in a variety of other tissues.
    Sequence similarity: Belongs to the S-101 family.
    Contains 2 EF-hand domains.
    General information above from UniProt

    S100B is a member of the S100 family of proteins containing two EF-hand-type calcium-binding motifs. S100B exerts both intracellular and extracellular functions. Intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. This calcium binding astrocyte-specific cytokine, presents a marker of astrocytic activation and reflects CNS injury. The excellent sensitivity of S100B has enabled it to confirm the existence of subtle brain injury in patients with mild head trauma, strokes, and after successful resuscitation from cardiopulmonary arrest. Recent findings provide evidence, that S100B may decrease neuronal injury and/or contribute to repair following traumatic brain injury (TBI). Hence, S100B, far from being a negative determinant of outcome, as suggested previously in the human TBI and ischemia literature, is of potential therapeutic value that could improve outcome in patients who sustain various forms of acute brain damage.

    S100B  Alternative Name

    S100,NEF,S100B,S100beta, [human]
    AI850290,Bpb,MGC74317,S100b, [mouse]

    S100B  Related Studies

  • Kleindienst A, et al. (2006) A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J Neurotrauma. 23(8): 1185-200.
  • Bloomfield SM, et al. (2007) Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care. 6(2): 121-38.
  • Donato R, et al. (2009) S100B's double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 1793(6): 1008-22.
  • Beaudeux JL. (2009) S100B protein: a novel biomarker for the diagnosis of head injury. Ann Pharm Fr. Beaudeux JL. 67(3): 187-94.
  • Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"