Text Size:AAA

Human PAH Gene cDNA clone plasmid

DatasheetSpecific ReferencesReviewsRelated ProductsProtocols
PAHcDNA Clone Product Information
RefSeq ORF Size:1359bp
cDNA Description:Full length Clone DNA of Homo sapiens phenylalanine hydroxylase.
Gene Synonym:PH, PKU, PKU1, PAH
Vector:pGEM-T Vector
Restriction Site:
Tag Sequence:
Sequence Description:Identical with the Gene Bank Ref. ID sequence except for two point mutations: 696 A/G, 735 G/A not causing the amino acid variation and 1243 G/A resulting in the amino acid Asp substitution by Asn.
Sequencing primers:SP6 and T7 or M13-47 and RV-M
Antibiotic in E.coli:
Antibiotic in mammalian cell:
Shipping_carrier:Each tube contains lyophilized plasmid.
Storage:The lyophilized plasmid can be stored at room temperature for three months.
Other PAH Protein Products
pGEM-T Vector Information

The pGEM-T is 3kb in length, and contains the amplicin resistance gene, conferring selection of the plasmid in E. coli, and the ori site which is the bacterial origin of replication. The plasmid has multiple cloning sites as shown below. The coding sequence was inserted by TA cloning. Many E. coli strains are suitable for the propagation of this vector including JM109, DH5α and TOP10.

pGEM-T Simple Usage Suggestion:

The coding sequence can be easily obtained by digesting the vector with proper restriction enzyme(s). The coding sequence can also be amplified by PCR with M13 primers, or primer pair SP6 and T7.

Vector Sequence Download
Related Products
Product nameProduct name

PAH (phenylalanine hydroxylase), also known as PH, belongs to the biopterin-dependent aromatic amino acid hydroxylase family. It contains 1 ACT domain, N-terminal region of PAH is thought to contain allosteric binding sites for phenylalanine and to constitute an "inhibitory" domain that regulates the activity of a catalytic domain in the C-terminal portion of the molecule. In humans, PAH is expressed both in the liver and the kidney, and there is some indication that it may be differentially regulated in these tissues. PAH catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine. It is one of three members of the pterin-dependent amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin and a non-heme iron for catalysis. Defects in PAH are the cause of phenylketonuria (PKU). PKU is an autosomal recessive inborn error of phenylalanine metabolism, due to severe phenylalanine hydroxylase deficiency. It is characterized by blood concentrations of phenylalanine persistently above 1200 mumol.

  • Fitzpatrick PF, et al. (1999) Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem. 68:355-81.
  • Olsson E, et al. (2011) Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases. Chemistry. 17(13):3746-58.
  • Bassan A, et al. (2003) Mechanism of aromatic hydroxylation by an activated FeIVO core in tetrahydrobiopterin-dependent hydroxylases. Chemistry. 9(17):4055-67.
  • Panay AJ, et al. (2011) Evidence for a high-spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase. Biochemistry. 50(11):1928-33.
  • Bassan A, et al. (2003) Mechanism of dioxygen cleavage in tetrahydrobiopterin-dependent amino acid hydroxylases. Chemistry. 9(1):106-15.