After search, choose a molecule or a kind of categories listed in the left to narrow down your filter. If you have any problems, please contact us!
Text Size:AAA

Human Transferrin/TF Gene ORF cDNA clone expression plasmid, C-Flag tag

DatasheetReviewsRelated ProductsProtocols
Human TF cDNA Clone Product Information
NCBI RefSeq:NM_001063.2
RefSeq ORF Size:2097bp
cDNA Description:Full length Clone DNA of Homo sapiens transferrin with C terminal Flag tag.
Gene Synonym:PRO1557, PRO2086, DKFZp781D0156
Restriction Site:KpnI (two restriction sites) + XbaI (6kb + 1.76kb + 0.39kb)
Sequence Description:Identical with the Gene Bank Ref. ID sequence except for the point mutations: 739C>T not causing the amino acid variation.
Promoter:Enhanced CMV mammalian cell promoter
Application:Stable or Transient mammalian expression
Antibiotic in E.coli:Kanamycin
Antibiotic in mammalian cell:Hygromycin
Shipping_carrier:Each tube contains lyophilized plasmid.
Storage:The lyophilized plasmid can be stored at room temperature for three months.
Human TF Gene Plasmid Map
Human TF natural ORF mammalian expression plasmid, C-Flag tag
FLAG Tag Info

FLAG-tag, or FLAG octapeptide, is a polypeptide protein tag that can be added to a protein using recombinant DNA technology. It can be used for affinity chromatography, then used to separate recombinant, overexpressed protein from wild-type protein expressed by the host organism. It can also be used in the isolation of protein complexes with multiple subunits.

A FLAG-tag can be used in many different assays that require recognition by an antibody. If there is no antibody against the studied protein, adding a FLAG-tag to this protein allows one to follow the protein with an antibody against the FLAG sequence. Examples are cellular localization studies by immunofluorescence or detection by SDS PAGE protein electrophoresis.

The peptide sequence of the FLAG-tag from the N-terminus to the C-terminus is: DYKDDDDK (1012 Da). It can be used in conjunction with other affinity tags, for example a polyhistidine tag (His-tag), HA-tag or Myc-tag. It can be fused to the C-terminus or the N-terminus of a protein. Some commercially available antibodies (e.g., M1/4E11) recognize the epitope only when it is present at the N-terminus. However, other available antibodies (e.g., M2) are position-insensitive.

Product nameProduct name

Transferrin is a glycoprotein with an approximate molecular weight of 76.5 kDa. This glycoprotein is thought to have been created as a result of an ancient gene duplication event that led to generation of homologous C and N-terminal domains each of which binds one ion of ferric iron. The function of Transferrin is to transport iron from the intestine, reticuloendothelial system, and liver parenchymal cells to all proliferating cells in the body. This protein may also have a physiologic role as granulocyte / pollen-binding protein (GPBP) involved in the removal of certain organic matter and allergens from serum. Transferrins are iron binding transport proteins which bind Fe3+ ion in association with the binding of an anion, usually bicarbonate. This transferrin binds only one Fe3+ ion per protein molecule. Transports iron ions from the hemolymph into the eggs during the vitellogenic stage. Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation. When a transferrin loaded with iron encounters with a transferring receptor on cell surface, transferring binds to it and, as a consequence, is transported into the cell in a visicle by receptor-mediated endocytosis. The PH is reduced by hydrogen iron pumps. The lower pH causes transferrin to release its iron ions. The receptor is then transported through the endocytic cycle back to the cell surface, ready for another round of iron uptake. Each transferrin molecule has the ability to carry two iron ions in the ferric form.

  • Ponka P, et al. (1998) Function and regulation of transferrin and ferritin. Semin Hematol. 35(1): 35-54.
  • Wagner E, et al. (1990) Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci. 87(9): 3410-4.
  • Cheng Y, et al. (2004) Structure of the human transferrin receptor-transferrin complex. Cell. 116 (4): 565-76.
  • All information of our products is subject to change without notice. Please refer to COA enclosed in shipped package for the newest information.