ERK2 (Protein|Antibody|cDNA Clone|ELISA Kit)

All ERK2 reagents are produced in house and quality controlled, including 7 ERK2 Antibody, 31 ERK2 Gene, 1 ERK2 IPKit, 3 ERK2 Lysate, 3 ERK2 Protein, 2 ERK2 qPCR. All ERK2 reagents are ready to use.

Recombinant ERK2 proteins are expressed by Baculovirus-Insect Cells with fusion tags as N-GST, N-GST & His, N-cleavage.

ERK2antibodies are validated with different applications, which are ELISA, WB, FCM, ICC/IF, IF, IP.

ERK2cDNA clones are full length sequence confirmed and expression validated. There are 13 kinds of tags for each ERK2 of different species, especially GFP tag, OFP tag, FLAG tag and so on. There are three kinds of vectors for choice, cloning vector, expression vector and lentivrial expression vector.

ERK2 Protein (3)

Species

ERK2 Protein, Human, Recombinant (GST Tag)

10030-H09B

Expression host: Baculovirus-Insect Cells

Human ERK2/MAPK1/MAPK2 Protein 8319

ERK2 Protein, Mouse, Recombinant (His & GST Tag)

50445-M20B

Expression host: Baculovirus-Insect Cells

Mouse ERK2/MAPK1/MAPK2 Protein 11640

ERK2 Protein, Mouse, Recombinant

50445-MNCB

Expression host: Baculovirus-Insect Cells

Mouse ERK2/MAPK1/MAPK2 Protein 11641
Go

ERK2 Antibody (7)

Application Clonality
Host

Anti-ERK2 Antibody

10030-T52

Application: WB,ELISA,IP

Clonality: PAb

Human ERK2/MAPK1/MAPK2 Western blot (WB) 15642

Anti-ERK2 Antibody

10030-MM09

Application: WB,ELISA

Clonality: MAb

Human ERK2/MAPK1/MAPK2 Western blot (WB) 6831

Anti-ERK2 Antibody

10030-RP01

Application: ELISA

Clonality: PAb

Anti-ERK2 Antibody

10030-R007

Application: ELISA,FCM,ICC/IF,IF

Clonality: MAb

Human ERK2/MAPK1/MAPK2 Flow Cytometry (FC) 18696

Anti-ERK2 Antibody

50445-RP01

Application: ELISA

Clonality: PAb

Anti-ERK2 Antibody

10030-R006

Application: ELISA

Clonality: MAb

Anti-ERK2 Antibody

50445-T48

Application: WB,ELISA

Clonality: PAb

Mouse ERK2/MAPK1/MAPK2 Western blot (WB) 13675
Go

ERK2 cDNA Clone (31)

Mouse
Human
Rat

ERK2 qPCR Primer (2)

ERK2 IP Kit (1)

ERK2 Lysate (3)

MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. ERK is a versatile protein kinase that regulates many cellular functions. Growing evidence suggests that extracellular signal-regulated protein kinase 1/2 (ERK1/2) plays a crucial role in promoting cell death in a variety of neuronal systems, including neurodegenerative diseases. It is believed that the magnitude and the duration of ERK1/2 activity determine its cellular function. Activation of ERK1/2 are implicated in the pathophysiology of spinal cord injury (SCI). ERK2 signaling is a novel target associated with the deleterious consequences of spinal injury. ERK-2, also known as Mitogen-activated protein kinase 1 (MAPK1), is a member of the protein kinase superfamily and MAP kinase subfamily. MKP-3 is a dual specificity phosphatase exclusively specific to MAPK1 for its substrate recognition and dephosphorylating activity. The activation of MAPK1 requires its phosphorylation by upstream kinases. Upon activation, MAPK1 translocates to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. MAPK1 is involved in both the initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors such as ELK1. MAPK1 acts as a transcriptional repressor which represses the expression of interferon gamma-induced genes. Transcriptional activity is independent of kinase activity. The nuclear-cytoplasmic distribution of ERK2 is regulated in response to various stimuli and changes in cell context. Furthermore, the nuclear flux of ERK2 occurs by several energy- and carrier-dependent and -independent mechanisms. ERK2 has been shown to translocate into and out of the nucleus by facilitated diffusion through the nuclear pore, interacting directly with proteins within the nuclear pore complex, as well as by karyopherin-mediated transport. ERK2 interacts with the PDE4 catalytic unit by binding to a KIM (kinase interaction motif) docking site located on an exposed beta-hairpin loop and an FQF (Phe-Gln-Phe) specificity site located on an exposed alpha-helix. These flank a site that allows phosphorylation by ERK, the functional outcome of which is orchestrated by the N-terminal UCR1/2 (upstream conserved region 1 and 2) modules.

Immune Checkpoint   Immunotherapy   Cancer Immunotherapy   Targeted Therapy

Protein
Antibody
Gene
qPCR
IPKit
Lysate
Close