Customer experience is always our first concern. Purchase can be made in your local currency now. Explore our website for more!
Text Size:AAA

Rhesus BMPR1A Gene cDNA clone plasmid

DatasheetReviewsRelated ProductsProtocols
Cynomolgus ALK-3 cDNA Clone Product Information
NCBI RefSeq:XM_001084567.1
RefSeq ORF Size:1599bp
cDNA Description:Full length Clone DNA of Macaca mulatta (Rhesus monkey) bone morphogenetic protein receptor, type IA.
Gene Synonym:BMPR1A
Species:Rhesus
Vector:pGEM-T Vector
Plasmid:pGEM-cynoBMPR1A
Restriction Site:
Tag Sequence:
Sequence Description:Identical with the Gene Bank Ref. ID sequence except for the point mutations: 474T/C, 570T/C, 1068C/A not causing the amino acid variation. Please check the sequence information before order.
Sequencing primers:SP6 and T7 or M13-47 and RV-M
Promoter:
Application:
Antibiotic in E.coli:
Antibiotic in mammalian cell:
Shipping_carrier:Each tube contains lyophilized plasmid.
Storage:The lyophilized plasmid can be stored at room temperature for three months.
pGEM-T Vector Information

The pGEM-T is 3kb in length, and contains the amplicin resistance gene, conferring selection of the plasmid in E. coli, and the ori site which is the bacterial origin of replication. The plasmid has multiple cloning sites as shown below. The coding sequence was inserted by TA cloning. Many E. coli strains are suitable for the propagation of this vector including JM109, DH5α and TOP10.

pGEM-T Simple Usage Suggestion:

The coding sequence can be easily obtained by digesting the vector with proper restriction enzyme(s). The coding sequence can also be amplified by PCR with M13 primers, or primer pair SP6 and T7.

Vector Sequence Download
Product nameProduct name
Background

Activin receptor-Like Kinase 3 (ALK-3), also known as Bone Morphogenetic Protein Receptor, type IA (BMPR1A), is a type I receptor for bone morphogenetic proteins (BMPs) which belong to the transforming growth factor beta (TGF-β) superfamily. The BMP receptors form a subfamily of transmembrane serine/threonine kinases including the type I receptors BMPR1A and BMPR1B and the type II receptor BMPR2. ALK-3/BMPR1A is expressed in the epithelium during branching morphogenesis. Deletion of BMPR1A in the epithelium with an Sftpc-cre transgene leads to dramatic defects in lung development. ALK-3 and ALK-6 share a high degree of homology, yet possess distinct signaling roles. The transforming growth factor (TGF)-beta type III receptor (TbetaRIII) enhanced both ALK-3 and ALK-6 signaling. TbetaRIII associated with ALK-3 primarily through their extracellular domains, whereas its interaction with ALK-6 required both the extracellular and cytoplasmic domains. ALK-3 plays an essential role in the formation of embryonic ventral abdominal wall, and abrogation of BMP signaling activity due to gene mutations in its signaling components could be one of the underlying causes of omphalocele at birth. The type IA BMP receptor, ALK-3 was specifically required at mid-gestation for normal development of the trabeculae, compact myocardium, interventricular septum, and endocardial cushion. Cardiac muscle lacking ALK-3 was specifically deficient in expressing TGFbeta2, an established paracrine mediator of cushion morphogenesis. Hence, ALK-3 is essential, beyond just the egg cylinder stage, for myocyte-dependent functions and signals in cardiac organogenesis.

References
  • Gaussin V, et al. (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci U S A. 99(5): 2878-83.
  • Eblaghie MC, et al. (2006) Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Dev Biol. 291(1): 67-82.
  • Sun J, et al. (2007) Deficient Alk3-mediated BMP signaling causes prenatal omphalocele-like defect. Biochem Biophys Res Commun. 360(1): 238-43.
  • Lee NY, et al. (2009) The transforming growth factor-beta type III receptor mediates distinct subcellular trafficking and downstream signaling of activin-like kinase (ALK)3 and ALK6 receptors. Mol Biol Cell. 20(20): 4362-70.
  • All information of our products is subject to change without notice. Please refer to COA enclosed in shipped package for the newest information.
    Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"